TheRobert Gillespie ACADEMIC SKILLS

 Mathematical Induction and Strong Induction
Induction:

Use induction when you are asked to prove a statement involving a natural number $P(n)$, for all natural numbers (e.g. Show $2 n-1$ is odd for all $n \in \mathbb{N}$).

There are two parts to induction: Base Case and Induction Step

1. In the base case, we show $P(n)$ true for a starting value, usually $P(1)$.
2. In the induction, step we show that if $P(n)$ works for a certain number k it will also work for the next number $k+1$ (you prove $P(k) \Rightarrow P(k+1)$). That is, you assume $P(k)$ is true and use it to show that $P(k+1)$ is also true. The statement $P(k)$ is called the induction hypothesis.

Example. Prove that $\sum_{i=1}^{n} i^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$ for all $n \in \mathbb{N}$.

Solution.

Since we are being asked to prove something for all natural numbers, we will use induction. Here $P(n)$ means $\sum_{i=1}^{n} i^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$.

1. Base Case:
commons This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Internationa License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0
$P(1)$ means $\sum_{i=1}^{1} i^{3}=\left(\frac{1(1+1)}{2}\right)^{2}$; check that the two sides are equal:
$\sum_{i=1}^{1} i^{3}=1^{3}=1$ and $\left(\frac{1(1+1)}{2}\right)^{2}=\left(\frac{2}{2}\right)^{2}=1$. Therefore, $P(1)$ is true.
2. Induction Step:

Induction Hypothesis:

Assume $P(k)$ is true, that is $\sum_{i=1}^{k} i^{3}=\left(\frac{k(k+1)}{2}\right)^{2}$. We will be using this fact in our proof.

Now, we must prove $P(k+1)$, that is $\sum_{i=1}^{k+1} i^{3}=\left(\frac{(k+1)((k+1)+1)}{2}\right)^{2}$.
We will start with the left side and show that it is equal to the right side. First expand the left side:

$$
\begin{aligned}
\sum_{i=1}^{k+1} i^{3} & =1^{3}+\ldots+k^{3}+(k+1)^{3} \\
& =\sum_{i=1}^{k} i^{3}+(k+1)^{3}
\end{aligned}
$$

Notice that $\sum_{i=1}^{k} i^{3}$ is a part of our hypothesis, we replace it with $\left(\frac{k(k+1)}{2}\right)^{2}$.

$$
=\left(\frac{k(k+1)}{2}\right)^{2}+(k+1)^{3}
$$

We use algebra to show that this is equal to the right side:

License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0.

$$
\begin{aligned}
\left(\frac{k(k+1)}{2}\right)^{2}+(k+1)^{3} & =(k+1)^{2}\left(\frac{k^{2}}{4}+k+1\right) \\
& =\frac{(k+1)^{2}}{4}\left(k^{2}+4 k+4\right) \\
& =\frac{(k+1)^{2}(k+2)^{2}}{4}
\end{aligned}
$$

We are done. Since we were able to show $P(k) \Rightarrow P(k+1)$ and our base case, we conclude that $\sum_{i=1}^{n} i^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$ for all $n \in \mathbb{N}$.

Strong Induction:

There are some statements $P(n)$ about the natural numbers which regular induction cannot prove, in which case we must use Strong Induction. The main difference is that instead of using only $P(k)$ to prove $P(k+1)$ we are allowed to use all of $P(1), \ldots, P(k)$ to prove it. We may not need all of them, but we assume they are all true.

We still have the same two steps, but they are slightly altered:

1. In the base case we prove more cases, the number depends on the question. Showing 3 base cases will be enough for most, usually $P(1), P(2)$ and $P(3)$.
2. In the induction step we assume $P(1), \ldots, P(k)$ are true and use them to prove $P(k+1)$. That is, we prove $P(1), \ldots, P(k) \Rightarrow P(k+1)$.

Example. Assume that $a_{n+1}=6 a_{n-1}-12 a_{n}+3$ with $a_{1}=1$ and $a_{2}=3$. Show that a_{n} is odd for all $n \in \mathbb{N}$.

Solution.

In this case $P(n)$ is the statement a_{n} is odd.

License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0.

1. Base Case

- $P(1)$ means a_{1} is odd; since $a_{1}=1$ we know it is odd.
- Similarly, $a_{2}=3$ is odd so $P(2)$ is true.
- To check a_{3} we must use the recursive formula:

$$
\begin{aligned}
& a_{3}=6 a_{2}-12 a_{1}+3 \\
& a_{3}=6(3)-12(1)+3 \\
& a_{3}=9
\end{aligned}
$$

So a_{3} is odd and $P(3)$ is true.
2. Induction Step:

Induction Hypothesis:

Assume that for some $k \in \mathbb{N}$ we have that $P(1), P(2), \ldots, P(k-1), P(k)$ are all true. That is, $a_{1}, a_{2}, \ldots, a_{k-1}, a_{k}$ are all odd. We will be using this fact in our proof.

Now, we must prove $P(k+1)$ is true. That is, a_{k+1} is odd. To talk about a_{k+1} we must use the recursive formula: $a_{k+1}=6 a_{k-1}-12 a_{k}+3$.
What do we know about a_{k-1} and a_{k} ? The induction hypothesis says they are odd! We can write them as $a_{k-1}=2 x+1$ and $a_{k}=2 y+1$ with $x, y \in \mathbb{Z}$. Let's use these in the formula and try to show a_{k+1} is odd. We are looking to express a_{k+1} as $a_{k+1}=2(\sim)+1$ where \sim is an integer:

$$
\begin{aligned}
& a_{k+1}=6(2 x+1)-12(2 y+1)+3 \\
& a_{k+1}=6(2 x+1)-12(2 y+1)+2+1 \\
& a_{k+1}=2[3(2 x+1)-6(2 y+1)+1]+1
\end{aligned}
$$

Since $3(2 x+1)-6(2 y+1)+1$ is an integer, a_{k+1} must be odd. Therefore by strong induction a_{n} is odd for all $n \in \mathbb{N}$.

License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0.

