

Bijections

Injection:

A function $f:A\to B$ is an injection when different inputs are always mapped to different outputs, that is, $x\neq y\Rightarrow f(x)\neq f(y)$.

In practice we normally use the contrapositive ($f(x) = f(y) \Rightarrow x = y$) as it is generally easier to prove.

To show a function is *not* injective, we must show a counterexample. We would need two different inputs $x_1 \neq x_2$ so that their outputs are the same $f(x_1) = f(x_2)$.

Surjection:

A function $f:A\to B$ is a surjection if every element of the codomain B is mapped onto. In other words, for any $b\in B$ we can find at least one $a\in A$ so that f(a)=b. One way to do this is to:

- 1. Pick an arbitrary element of the codomain (let $b \in B$, without specifying anything else about it).
- 2. Look for $a \in A$ so that f(a) = b (do this by plugging in x into f, set f(x) = b and solve for x in terms of b).
- 3. Confirm that plugging in this x into f actually does output b, as well as making sure that $x \in A$.

corrective commonsThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0.

Another way is to prove that the image of $\,f\,$ is equal to the codomain, i.e., im(f)=B

To show a function is not a surjection, we again must find a counterexample. That would be finding $b \in B$ so that it isn't possible that f(a) = b for any $a \in A$.

Bijection:

A bijection is a function $f:A\to B$ which is both **injective** and **surjective**. Bijections can be reversed, if f is a bijection then there is a function $f^{-1}:B\to A$ (called the inverse function of f) which undoes what f does.

Formally,

$$f(a) = b$$
 if and only if $f^{-1}(b) = a$

This is demonstrated in the fact that $f(f^{-1}(x)) = x$ and $f^{-1}(f(x)) = x$. It is useful to note that f^{-1} is also a bijection.

Example. Determine whether the following functions are injective, surjective, bijective or neither.

(a)
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = \begin{cases} -\frac{1}{x}; & x < 0 \\ -x^2 + 1; & x \ge 0 \end{cases}$

(b)
$$f: \mathbb{R}^2 \to \mathbb{R}$$
, $f(a,b) = a \cdot b$

Solution Part (a).

Since we have a piecewise function, we must handle it slightly differently.

For surjectivity, we must show the combined images of each part are equal to the codomain $\mathbb R$. For injectivity, we must show that each function is injective *as well*

as show that
$$-\frac{1}{x_1} \neq -x_2^2 + 1$$
, that is, $f(x_1) \neq f(x_2)$.

We will test surjection first:

First, take x < 0, so $f(x) = -\frac{1}{x}$. We want to build up $-\frac{1}{x}$ within the x < 0 inequality:

$$x < 0 \Rightarrow \frac{1}{x} < 0 \Rightarrow -\frac{1}{x} > 0 \Rightarrow f(x) > 0$$

Therefore, the image of f when x < 0 is $(0, \infty)$.

Now for the second part, we begin with $x \ge 0$ and build up $-x^2 + 1$ within the inequality:

$$x \ge 0 \Rightarrow x^2 \ge 0 \Rightarrow -x^2 \le 0 \Rightarrow -x^2 + 1 \le 1$$

Thus, the image of f when $x \ge 0$ is $(-\infty, 1]$.

Putting these two together, we see that the image of f is:

$$(0,\infty)\cup(-\infty,1]=(-\infty,\infty)=\mathbb{R}$$

and f is surjective.

We now test injection:

From the work on surjectivity above we see that the images of the two functions that make up f overlap. This means we should be able to find $x_{\rm l}<0$ and

$$x_2 \ge 0$$
 so that $f(x_1) = f(x_2)$, that is, $-\frac{1}{x_1} = -x_2^2 + 1$. One way to do this is

to try guessing using "easy" numbers. For instance, when $\boldsymbol{x}_{\scriptscriptstyle 2} = \boldsymbol{0}$ then

$$-\frac{1}{x_1} = -x_2^2 + 1$$
 implies $-\frac{1}{x_1} = 1$ and $x_1 = -1$. Done! As $f(0) = 1$ and

CreativeCommons This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0.

f(-1)=1, we see that f(0)=f(-1) , however, $0\neq -1$ so f is not injective.

Alternatively, we have to try to find these x_1 and x_2 to prove the function is not injective. It seems easier to solve for x_1 :

$$-\frac{1}{x_1} = -x_2^2 + 1$$

$$-1 = (-x_2^2 + 1)x_1$$

$$\frac{-1}{-x_2^2 + 1} = x_1$$

Since we said $x_1 < 0$, we can apply this to our expression: $\frac{-1}{-x_2^2 + 1} < 0$. Since

the numerator is a negative, the denominator must be a positive for this to be true. That is, $-{x_2}^2+1>0$. We can then solve for x_2 :

$$-x_2^2 + 1 > 0 \Rightarrow -x_2^2 > -1 \Rightarrow x_2^2 < 1 \Rightarrow |x_2| < 1 \Rightarrow -1 < x_2 < 1$$

Since $x_2 \ge 0$ this is restricted to $0 \le x_2 < 1$. We pick a value from that range, the easiest being $x_2 = 0$ and find the respective $x_1 : \frac{-1}{\Omega^2 + 1} = x_1 \Longrightarrow x_1 = -1$

From here we check their values: f(0)=1 and f(-1)=1. So f(0)=f(-1) , however, $0\neq -1$ so f is not injective.

Since f is not injective, it is not bijective. Thus f is only surjective.

Solution Part (b).

We test injection:

Creative CommonsThis work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0.

One way is to ask the following question: can we find two different pairs of numbers, which, when multiplied, give the same number? Start, for instance, with $f(2,4)=2\cdot 4=8$. Now we need a different pair whose product is 8; there are many such pairs, for instance, $f(1,8)=1\cdot 8=8$. Thus, f is not injective.

Alternatively: we would like to prove that for $(a,b),(c,d) \in \mathbb{R}$ we have:

$$f(a,b) = f(c,d) \Rightarrow (a,b) = (c,d)$$

i.e., that a=c and b=d. So, we will try to prove it. We assume f(a,b)=f(c,d), this would mean ab=cd. This doesn't give us much, as we cannot conclude that a=c and b=d. Therefore, we look for a counterexample:

$$f(2,6) = 2 \cdot 6 = 12$$
 and $f(3,4) = 3 \cdot 4 = 12$.

Meanwhile, $(2,6) \neq (3,4)$. Therefore, f is not injective.

Testing surjection:

We pick an arbitrary element of the codomain, let $r \in \mathbb{R}$. We must find $(a,b) \in \mathbb{R}^2$ such that f(a,b) = r, so we expand the function: ab = r. It will be hard to find two variables in one equation so we "fix" one of them to make our work easier; let b=1 and we try to find a to make the equation work:

$$ab = r$$

$$a(1) = r$$

$$a = r$$

This tells us (1,r) satisfies our requirement, we confirm it: $f(1,r)=1\cdot r=r$. Since we were able to find $(a,b)\in\mathbb{R}^2$ so that f(a,b)=r for arbitrary $r\in\mathbb{R}$, f is a surjective function.

Because it is not injective, f is not bijective.