ACADEMIC SKILLS CENTRE

Matrix Inverse

The inverse of an $n \times n$ matrix A (if it exists) is defined to be the matrix B so that BA = I and AB = I, where I is the identity matrix. If the inverse exists, A is called invertible and its inverse is denoted by A^{-1} .

To determine if an $n \times n$ matrix A is invertible, we can use the determinant:

An $n \times n$ matrix A is invertible if and only if $\det(A) \neq 0$.

For an invertible matrix A, the system of linear equations Ax = b has the unique solution $x = A^{-1}b$.

Computing Inverses:

For a 2×2 matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ we have a formula we can use to find the

inverse:

$$A^{-1} = \frac{1}{\det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

For a more general $n \times n$ invertible matrix A, we use the following steps:

1. Augment A with the identity matrix (I) of the same size.

- Use row operations to take A to reduced row echelon form while 2. performing those operations on the augmented matrix, i.e., including I as well. This should result in I in the place where A was.
- Once the original A becomes I , the matrix in the place of where I3. was is the inverse A^{-1} .

Here is a visualization: $\lceil A \mid I \rceil \rightarrow \dots \rightarrow \lceil I \mid A^{-1} \rceil$.

Useful Facts:

Let A and B be invertible matrices.

(1)
$$I^{-1} = I$$
 (4) $(A^k)^{-1} = (A^{-1})^k$, where $k \in$

(3)
$$(AB)^{-1} = B^{-1}A^{-1}$$
 (6) $(A^T)^{-1} = (A^{-1})^T$, where T denotes the transpose of a matrix

Find the inverses of the following matrices. Example.

(a)
$$A = \begin{bmatrix} 8 & 7 \\ 1 & 2 \end{bmatrix}$$
 (b) $A = \begin{bmatrix} 3 & 7 & 2 \\ 5 & 2 & 6 \\ 1 & 0 & 4 \end{bmatrix}$

Solution Part (a).

First, we'll find out if it is invertible by finding the determinant.

$$\det(A) = (8)(2) - (1)(7) = 9 \neq 0$$

Since the determinant is non-zero, we use the formula for a 2×2 matrix:

$$A^{-1} = \frac{1}{\det(A)} \begin{bmatrix} 2 & -7 \\ -1 & 8 \end{bmatrix} = \frac{1}{9} \begin{bmatrix} 2 & -7 \\ -3 & 8 \end{bmatrix} = \begin{bmatrix} \frac{2}{9} & \frac{-7}{9} \\ \frac{-3}{9} & \frac{8}{9} \end{bmatrix}$$

Solution Part (b).

Again, find if A is invertible first by computing its determinant:

$$det(A) = 1(42-4)-0+4(6-35)$$

= 38+4(-29)
= -78 \neq 0

Apply the row reduction to $\,A\,$ augmented by $\,I\,$:

$$\begin{bmatrix}
3 & 7 & 2 & 1 & 0 & 0 \\
5 & 2 & 6 & 0 & 1 & 0 \\
1 & 0 & 4 & 0 & 0 & 1
\end{bmatrix}$$

$$R1 \leftrightarrow R3$$

$$\begin{bmatrix}
1 & 0 & 4 & 0 & 0 & 1 \\
5 & 2 & 6 & 0 & 1 & 0 \\
3 & 7 & 2 & 1 & 0 & 0
\end{bmatrix}$$

$$R2 \leftarrow R2 - 5R1$$

$$R3 \leftarrow R3 - 3R1$$

$$\begin{bmatrix}
1 & 0 & 4 & 0 & 0 & 1 \\
0 & 2 & -14 & 0 & 1 & -5 \\
0 & 7 & -10 & 1 & 0 & -3
\end{bmatrix}$$

$$R2 \leftarrow \frac{1}{2}R2$$

$$\begin{bmatrix}
1 & 0 & 4 & 0 & 0 & 1 \\
0 & 2 & -14 & 0 & 1 & -5 \\
0 & 7 & -10 & 1 & 0 & -3
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 4 & 0 & 0 & 1 \\
0 & 1 & -7 & 0 & \frac{1}{2} & \frac{-5}{2} \\
0 & 7 & -10 & 1 & 0 & -3
\end{bmatrix}$$

CreativeCommons This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0.

$$R3 \leftarrow R3 - 7R2 \qquad \begin{bmatrix} 1 & 0 & 4 & 0 & 0 & 1 \\ 0 & 1 & -7 & 0 & \frac{1}{2} & \frac{-5}{2} \\ 0 & 0 & 39 & 1 & \frac{-7}{2} & \frac{29}{2} \end{bmatrix}$$

$$R3 \leftarrow \frac{1}{39}R3 \qquad \begin{bmatrix} 1 & 0 & 4 & 0 & 0 & 1 \\ 0 & 1 & -7 & 0 & \frac{1}{2} & \frac{-5}{2} \\ 0 & 0 & 1 & \frac{1}{39} & \frac{-7}{78} & \frac{29}{78} \end{bmatrix}$$

$$R1 \leftarrow R1 - 4R3$$

$$R2 \leftarrow R2 + 7R3 \qquad \begin{bmatrix} -4 & \frac{14}{39} & \frac{-19}{39} \\ 0 & 1 & 0 & \frac{7}{39} & \frac{-5}{39} & \frac{4}{39} \\ 0 & 0 & 1 & \frac{1}{39} & \frac{-7}{78} & \frac{29}{78} \end{bmatrix}$$

Since we finally made it to the identity matrix on the left side, the right side is our inverse. We can factor out a $\frac{1}{39}$ from all the entries to make it easier to read:

$$A^{-1} = \frac{1}{39} \begin{bmatrix} -4 & 14 & -19 \\ 7 & -5 & 4 \\ 1 & \frac{-7}{2} & \frac{29}{2} \end{bmatrix}$$

Commons This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0.