TheRobert Gillespie ACADEMIC SKILLS CENTRE

AGM Inequality

For real numbers A and B the Arithmetic-Geometric Mean Inequality says:

- $\quad A \cdot B \leq\left(\frac{A+B}{2}\right)^{2}$.
- If $A, B \geq 0$ then $\sqrt{A B} \leq \frac{A+B}{2}$.

The quantity $\sqrt{A B}$ is called the geometric mean, and $\frac{A+B}{2}$ is the arithmetic mean of A and B. These inequalities become equalities if and only if $A=B$. We can use the AGM inequality to find maximum and minimum values by substituting for A and B above. Keep in mind that we have multiplication on the "smaller" side and addition on the "greater" side. Thus, we can find a maximum for the multiplication side ($A \cdot B \leq M$) if the addition side can be dealt with and a minimum for the addition side ($M \leq\left(\frac{A+B}{2}\right)^{2}$) if the multiplication side can be dealt with.

Example. Find the maximum area of a rectangle with a perimeter of 20 m . What dimensions give the maximum area?

Solution.

We would like to find a maximum for the area. The area of a rectangle is given by $A=l \cdot w$, a maximum for the area would then mean finding a number M so that $l \cdot w \leq M$.

We're told the perimeter is $20 m$, this is given by $2 l+2 w=20$, i.e., $l+w=10$. We use AGM by setting $A=l$ and $B=w$ which gives:

This is useful because the left side contains $l \cdot w$ and on the right side we use $l+w=10$ to look for our M.

$$
\begin{aligned}
(l)(w) & \leq\left(\frac{l+w}{2}\right)^{2} \\
l \cdot w & \leq\left(\frac{10}{2}\right)^{2} \\
l \cdot w & \leq 25
\end{aligned}
$$

Therefore, we see that the maximum area is $25 \mathrm{~m}^{2}$.
We want to know when $l \cdot w=25$. AGM says this happens when $A=B$, that is $l=w$, which we can use with $l+w=10$:

$$
\begin{gathered}
l+l=10 \\
l=5
\end{gathered}
$$

Substituting $l=5$ into $l=w$ tells us that $w=5$, meaning the rectangle with the maximum area is a 55 square.

Example. Find a lower bound for $f(x)=x+\frac{9}{x}+1$ when $x>0$. Find the point(s) where this happens.

Solution.

We're being asked to find a lower bound, or a minimum, so we'll have to use an inequality. The key thing to notice is that we have $x+\frac{9}{x}$, if we multiply x and $\frac{9}{x}$ we can eliminate the x; this will allow us to use AGM. Since we have $x>0$ we can use the second version with $A=x$ and $B=\frac{9}{x}:$

$$
\begin{aligned}
& \sqrt{A B} \leq \frac{A+B}{2} \\
& \sqrt{x \frac{9}{x}} \leq \frac{x+\frac{9}{x}}{2} \\
& 2 \sqrt{9} \leq x+\frac{9}{x} \\
& 6 \leq x+\frac{9}{x}
\end{aligned}
$$

At this point we almost have the function. We can add 1 to both sides to complete it:

$$
\begin{aligned}
& 7 \leq x+\frac{9}{x}+1 \\
& 7 \leq f(x)
\end{aligned}
$$

We want to know x where $f(x)=7$, according to AGM this happens when $A=B$:

$$
\begin{aligned}
x & =\frac{9}{x} \\
x^{2} & =9 \\
x & = \pm 3
\end{aligned}
$$

Since we know that $x>0$ the solution is $x=3$. Thus, the point is $(3,7)$.

