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Volumes

Let S be a three-dimensional solid, placed so that it lies between the vertical
planes X =a and X = b. If the cross sectional area of S in the plane SX,

through X and perpendicular to the X-axis, is A(X), where
b

A is a continuous function, then the volume of Sis V = I A(X) dx.
a

If S is a solid of revolution, then all cross-sections are disks, and A(X) = 7ZI‘X2
where [ is the radius of the cross-sectional disk in the plane Sxthrough X.

Rotation about the X-axis or horizontal line

V=| zr’dx or V:J'X a(rs,., — o )dx

x=a inner

Example. Find the volume of the solid obtained by rotating the region

bounded by the curves Y =+/X—1, Yy =0, and X =5 about the
X-axis.

Solution.
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The cross sectional area perpendicular to the X-axis is

A(X) = (y(x))"

The volume of a slice with thickness dX is

dV = A(x)dx = z(y(x))* dx.

The volume of the given solid of revolution is

V= LSA(x)dx = LS my®dx == ﬂf (V/x—1)dx
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Rotation about Y-axis or vertical line

V= Iyayrr dy or V= I a(ri, —r: )dy
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Example. Find the volume of the solid obtained by rotating the region

bounded by the curves X = Y° +1 and X = 3 about the line
X=3

Solution.

The cross sectional area perpendicular to the Y-axis is
A(y) = 7(3-x(y))’

=7(3-L+y"))’

=n(2-y°)
The volume of a slice with thickness dY is

dV = A(y)dy = z(x(y))*dy.
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The volume of the solid object is
_ V2 _ V2 232
V=] AWdy=[" z(2-y*)dy
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