

Series

Series

An expression of the form $a_1+a_2+\ldots+a_n+\ldots=\sum_{n=1}^\infty a_n$ is called an infinite series or simply a series, where a_n is the nth term of a sequence.

The nth partial sum s_n of an infinite series $\sum_{n=1}^{\infty} a_n$ is $s_n = a_1 + a_2 + ... + a_n$.

Definition: An infinite series $\sum_{n=1}^{\infty} a_n$ is convergent if $\lim_{n \to \infty} s_n = s$ for some real number s. The series is divergent if the limit does not exist (i.e., if it is not a real number).

If the infinite series $\sum_{n=1}^{\infty}a_n$ is convergent and $\lim_{n\to\infty}s_n=s$, then s is called the sum of the series and can be written as $s=a_1+a_2+\ldots+a_n+\ldots$. If the series diverges, then it has no sum.

Geometric Series

The geometric series, $\sum_{n=1}^{\infty} ar^{n-1} = a + ar + ar^2 + ar^3 + ... = \sum_{n=0}^{\infty} ar^n$, converges if

|r| < 1 and has the sum $\frac{a}{1-r}$ where a is the first term of the series and r is called the common ratio. The geometric series diverges if $|r| \ge 1$.

Example. Determine if the series converges or diverges. If the series converges, find its sum.

(a)
$$\sum_{n=1}^{\infty} 5^{-n} 2^{n+1}$$
 (b) $\sum_{n=0}^{\infty} \frac{(-2)^{2n}}{3^{n-1}}$

Solution. (a) Rewrite the series in the form: $\sum_{n=1}^{\infty} ar^{n-1}$

$$\sum_{n=1}^{\infty} 5^{-n} 2^{n+1} = \sum_{n=1}^{\infty} \frac{2^{n+1}}{5^n} = \sum_{n=1}^{\infty} \frac{2^{n+1}}{5^n} \frac{5}{5} \frac{2^2}{2^2}$$
$$= \sum_{n=1}^{\infty} \frac{2^{n-1}}{5^{n-1}} \frac{4}{5} = \sum_{n=1}^{\infty} \frac{4}{5} \left(\frac{2}{5}\right)^{n-1}$$

Then, $a = \frac{4}{5}$ and $r = \frac{2}{5} < 1$. Thus, this geometric series

converges, and its sum is
$$\frac{a}{1-r} = \frac{\frac{4}{5}}{1-\frac{2}{5}} = \frac{4}{3}.$$

(b) Rewrite the series in the form: $\sum_{n=0}^{\infty} ar^n$

$$\sum_{n=0}^{\infty} \frac{(-2)^{2n}}{3^{n-1}} = \sum_{n=0}^{\infty} 3 \frac{4^n}{3^n} = \sum_{n=0}^{\infty} 3 \left(\frac{4}{3}\right)^n$$

Then, $r = \frac{4}{3} > 1$. Thus, this geometric series diverges, and it has no sum.

Telescoping Series

Use partial fraction decomposition for rational expressions to calculate the partial sum;

for instance, to find the partial sum of
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$
, use $\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$. Then, expand the series up to its nth term to find the

partial sum.

Example. Prove that the following infinite series converges, and find its sum:

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \frac{1}{1(2)} + \frac{1}{2(3)} + \frac{1}{3(4)} + \dots + \frac{1}{n(n+1)} + \dots$$

Solution. The partial sum of this infinite series is

$$S_n = \sum_{i=1}^n \frac{1}{i(i+1)} = \frac{1}{1(2)} + \frac{1}{2(3)} + \frac{1}{3(4)} + \dots + \frac{1}{n(n+1)}$$

Using partial fraction decomposition on the rational expression of the partial sum: $\frac{1}{i(i+1)} = \frac{1}{i} - \frac{1}{i+1}$

Then, once expanding the sum, the partial sum reduces to n

$$S_{n} = \sum_{i=1}^{n} \left(\frac{1}{i} - \frac{1}{i+1} \right) = \left(1 - \frac{1}{2} \right) + \left(\frac{1}{2} - \frac{1}{3} \right) + \left(\frac{1}{3} - \frac{1}{4} \right) + \dots$$

$$+ \left(\frac{1}{n-2} - \frac{1}{n-1} \right) + \left(\frac{1}{n-1} - \frac{1}{n} \right) + \left(\frac{1}{n} - \frac{1}{n+1} \right)$$

$$= 1 - \frac{1}{n+1}$$

Finally, take the limit of the partial sum as n approaches to ∞ .

$$\lim_{n\to\infty} S_n = \lim_{n\to\infty} \left(1 - \frac{1}{n+1}\right) = \lim_{n\to\infty} \left(1 - \frac{1/n}{1+1/n}\right) = 1.$$

p-series

Fact: The p-series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent if p > 1 and divergent if $p \le 1$.

For example, $\sum_{n=1}^{\infty} \frac{1}{n}$ (harmonic series) is divergent since it is a p-series with p=1.