Limits as x approaches Infinity

 CENTRELimits as $X \rightarrow \pm \infty$
When the values of the function $f(x)$ approach the number L as X increases without a bound (meaning that the values of X can be chosen to be larger than any real number chosen),

$$
\lim _{x \rightarrow+\infty} f(x)=L
$$

Likewise,

$$
\lim _{x \rightarrow-\infty} f(x)=M
$$

when the functional values $f(x)$ approach the number M as x decreases without a bound.

Horizontal Asymptotes

Geometrically, $\lim _{x \rightarrow+\infty} f(x)=L$ means that the graph of $f(x)$ approaches the horizontal line $y=L$ at infinity, while $\lim _{x \rightarrow-\infty} f(x)=M$ means that the graph of $f(x)$ approaches the horizontal line $y=M$ at negative infinity.

The lines $y=L$ and $y=M$ are called horizontal asymptotes.
Note that to find horizontal asymptotes, both the limit at $+\infty$ and at $-\infty$ must be checked.

Reciprocal Power Rules

If A and p are constants with $p>0$ and X^{p} is defined for all X, then

$$
\lim _{x \rightarrow \infty} \frac{A}{x^{p}}=0 \text { and } \lim _{x \rightarrow-\infty} \frac{A}{x^{p}}=0
$$

Computation of Limits when $\lim _{x \rightarrow \pm \infty} f(x)=\lim _{x \rightarrow \pm \infty} \frac{p(x)}{q(x)}$
Step 1. Divide each term in $f(x)$ by the highest power of X^{p} that appears in the denominator. (Alternatively, divide by the highest power in the numerator, or by the highest power overall in $f(x)$.)

Step 2. Compute $\lim _{x \rightarrow+\infty} f(x)$ and $\lim _{x \rightarrow-\infty} f(x)$ using algebraic properties of limits and the reciprocal power rules.

Example. Evaluate $\lim _{x \rightarrow \infty} \frac{3 x^{2}-x-2}{5 x^{2}+4 x+1}$.

Solution. The highest power in the denominator is X^{2}.
Divide the numerator and denominator by x^{2} to get:
$\lim _{x \rightarrow \infty} \frac{3 x^{2}-x-2}{5 x^{2}+4 x+1}=\lim _{x \rightarrow \infty} \frac{3-1 / x-2 / x^{2}}{5+4 / x+1 / x^{2}}=\frac{3-0-0}{5+0+0}=\frac{3}{5}$
Thus, the graph of $f(x)=\frac{3 x^{2}-x-2}{5 x^{2}+4 x+1}$ has a horizontal asymptote at $y=\frac{3}{5}$. Note that the limit at $-\infty$ gives the same answer.

Example. Find $\lim _{r \rightarrow-\infty} \frac{r^{4}-r^{2}+1}{r^{5}+r^{3}-r}$.
Solution. $\quad \lim _{r \rightarrow-\infty} \frac{r^{4}-r^{2}+1}{r^{5}+r^{3}-r}=\lim _{r \rightarrow-\infty} \frac{1 / r-1 / r^{3}+1 / r^{5}}{1+1 / r^{2}-1 / r^{4}}=\frac{0-0+0}{1+0-0}=0$
There is a horizontal asymptote at $y=0$. Note that the limit at $+\infty$ gives the same answer.

Example. Find $\lim _{x \rightarrow+\infty} \frac{x^{2}+x}{3-x}$.
Solution. $\quad \lim _{x \rightarrow+\infty} \frac{x^{2}+x}{3-x}=\lim _{x \rightarrow+\infty} \frac{x+1}{3 / x-1}=-\infty$
Thus, the graph of $f(x)=\frac{x^{2}+x}{3-x}$ has no horizontal asymptote at $+\infty$.
Note that to find the horizontal asymptotes, the limit at $-\infty$ must be checked as well.

