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Integral Test

Suppose f is continuous, positive, decreasing function on [1,00) and let &, = f(n).

Then, the series Z a, is convergent if and only if the improper integral J1 f(X) dX is
n=1
convergent.

Remember: By the Integral Test, the following result can be proven.

The p-series Z— is convergent if P > 1 and divergent if p< 1. For
n-1 N

example, Z— (harmonic series) is divergent since it is a
n=1
p-series with P =1.

12
Example. Determine whether the series Z ne™" diverges or converges.
n=1

2
Solution. Let f(X)= Xe ™ . The function f (X) is continuous, positive, and
2
decreasing, since f'(X)=¢€"" (1—2x) <0 forall X values in [1,0).

By the integral test, (using integration by substitution)
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since lime™ =0 . Thus, the series Z ne™" converges.

X—>0
n=1
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