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SKILLS
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Improper Integrals
Type I. Infinite Intervals
0 t
(a) If f is continuous on [a,), then j f(x)dx = limj f(x)dx.
a

(b) If £ is continuous on (—o0, a], then J._a f(x)dx = hmj f(x)dx.

(c)  If f is continuous on (—00,0), then break up the integral at a
convenient value of @, i.e., write

T f(x)dx = jﬂ f(x)dx + If(x)dx, and then use (a) and (b).

Type ll. Discontinuous Functions

(@) If f is continuous on [a, b) and discontinuous at b, then
b
[ fx)dx = lim [ f@yax.
a = a

(b) If f is continuous on (a,b] and discontinuous at &, then

Lb f(x)de = lim j:’ f(x)dx.

(c) If f is continuous on [a, b], except at a number ¢ in (a,b), then
break up the integral at C, i.e., write

If(x)dx = jf(x)dx + Jf(x)dx, and then use (a) and (b).

The improper integral is said to:

e CONVERGE if the limit in (a) and (b) exists, or if both limits in (c) exist
o DIVERGE if the limit in (a) or (b) does not exist, or if at least one of the
limits in (c) does not exist
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Remember: The improper integral I —pdx, where p is a real number
I x

converges when p > 1, and diverges when p < 1.

Example. Determine whether the following integrals converge or diverge.

(a) e dx (b) J.Oo xe* dx
J2 o0
o1 1
(c) —dx
J0 x
Solution. (a)
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Thus, | e " dx converges.
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(c)
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The first limit is equal to —00, and thus J. xe* dx

diverges. (Note that the second limit is +00 which also
implies that the given improper integral diverges.)

In the calculation, note that 1im e* = +0.
X—>+00
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= lim(In(1) — In(#)) = +o0
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Thus, J.O x In x dx diverges.

Note that lim In x = —o0.
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