Integration Bee 2023

Instructions

1. Solve as many integrals as you can within the time limit!

2. Each problem is worth **one point**.

3. You may work on the problems in any order you like.

4. Don't forget +C!

5. Show your work! A correct answer with no admissible justification will not count for points. The Integration Judges have the final say in how much work counts as "admissible".

6. Allowed materials: writing utensils, and blank paper for rough work. (No calculators, computers, or notes!)

7. Ties will be broken using additional problems.

8. Time limit: 45 minutes.

Integrals

1.
$$\int \frac{e^{1/x}}{(xe^{1/x} + x)^2} dx$$

6.
$$\int \sqrt[3]{\tan(x)} \ dx$$

$$2. \int_0^1 \sqrt{1 - \sqrt{x}} \ dx$$

7.
$$\int_0^4 \frac{1}{|x-2| + |x-3|} \ dx$$

3.
$$\int \cos(\ln(x)) \ dx$$

$$8. \int \sqrt{x + \sqrt{x + \sqrt{x + \cdots}}} \, dx$$

$$4. \int_{1}^{10} \left[\ln \left[x \right] \right] dx$$

9.
$$\int_{0}^{1} \ln(1+\sqrt{x}) dx$$

 $5. \int \left(\frac{1}{x + \frac{1}{x}}\right)^2 dx$

Tie Breakers

1. Let $f: \mathbf{R} \to \mathbf{R}$ be a continuous function satisfying f(2x) = 3f(x) for all $x \in \mathbf{R}$, and $\int_0^1 f(x) \ dx = 1$. Calculate $\int_1^2 f(x) \ dx$.

2. Evaluate the integral: $\int_0^{\pi} |\sin(20x)| dx$.

3. Let $f(x) = x^3 + x + 1$. Evaluate the integral: $\int_1^3 f^{-1}(y) \ dy$.

Solutions

1. Answer: $\frac{1}{e^{1/x}+1}+C$.

Solution sketch: Substitute u = 1/x, then substitute $v = e^u + 1$.

2. Answer: 8/15.

Solution sketch: Substitute $u=1-\sqrt{x}$ and use dx=2(u-1) du to simplify the integral into $2\int_1^0 u^{3/2}-u^{1/2}\ du$.

3. Answer: $\frac{x}{2}(\sin \ln(x) + \cos \ln(x)) + C$.

Solution sketch: Substitute $u \ln(x)$ and rearrange to get $dx = e^u du$. The integral becomes $\int e^u \cos(u) du$, which is a classic integral — solve it by using integration by parts twice.

4. Answer: 9.

Solution sketch: The flooring operation turns this into a "staircase" function which only takes integer values. The key points of interest are when $x=1, x=e\approx 2.71$, and $x=e^2\approx 7.38$. So we split the x-axis up into three cases based on this.

- If $1 \le x < 3$, then $1 \le \lfloor x \rfloor \le 2$, so $0 \le \ln \lfloor x \rfloor \le \ln(2)$. Note $\ln(2)$ is smaller than $\ln(e) = 1$. Thus $\ln \lfloor x \rfloor$ is in [0,1), which means $|\ln |x|| = 0$.
- If $3 \le x < 8$, then $3 \le \lfloor x \rfloor \le 7$, so $\ln(3) \le \ln \lfloor x \rfloor \le \ln(7)$. Note that $\ln(7)$ is strictly smaller than $\ln(e^2) = 2$, and $\ln(3)$ is strictly larger than $\ln(e) = 1$. Thus,

$$1 < \ln|x| < 2.$$

We conclude that $|\ln|x|| = 1$ in this case.

• If $8 \le x \le 10$, then similar analysis shows $\lfloor \ln \lfloor x \rfloor \rfloor = 2$.

Thus the integral can be split up over these three domains, to get:

$$\int_{1}^{10} \lfloor \ln \lfloor x \rfloor \rfloor \ dx = \int_{1}^{3} 0 \ dx + \int_{3}^{8} 1 \ dx + \int_{8}^{10} 2 \ dx = 9.$$

5. Answer: $\frac{1}{2}\arctan(x) - \frac{x}{2(x^2+1)} + C$.

Solution sketch: The integrand becomes

$$\left(\frac{1}{x+1/x}\right)^2 = \frac{x^2}{(x^2+1)^2} = \frac{1}{x^2+1} - \frac{1}{(x^2+1)^2}.$$

The first term is $\arctan(x)$. The second term requires a trig substitution with $x = \tan(\theta)$, which simplifies into $\int \cos^2(\theta) d\theta$. This one can be solved with the half-angle identity.

6. Answer: $\frac{1}{4} \ln \left(\tan^{4/3}(x) - \tan^{2/3}(x) + 1 \right) + \frac{\sqrt{3}}{2} \arctan \left(\frac{2 \tan^{2/3}(x) - 1}{\sqrt{3}} \right) - \frac{1}{4} \ln \left(\tan^{2/3}(x) + 1 \right) + C.$

Solution sketch: Substitute $u = \tan(x)$. Then $du = \sec^2(x) dx = (\tan^2(x) + 1) dx = (u + 1) dx$, so our integral transforms as follows:

$$\int \tan^{1/3}(x) \ dx = \int \frac{u^{1/3}}{u+1} \ du.$$

This can be turned into a rational function using the substitution $v = u^{2/3}$, after which you can use partial fractions.

7. Answer: $1 + \frac{1}{2}\ln(15) \approx 2.3540$.

Solution sketch: Split into three cases: $0 \le x \le 2$, $2 \le x \le 3$, and $3 \le x \le 4$. The integrand simplifies greatly in each case.

8. Answer: $\frac{1}{2}x + \frac{1}{12}(4x+1)^{3/2} + C$.

Solution sketch: Let $f(x) = \sqrt{x + \sqrt{x + \cdots}}$ be the integrand in question. Notice that f(x) satisfies the recurrence $\sqrt{x + f(x)} = f(x)$. Solving for f(x) here gives

$$f(x) = \frac{1 + \sqrt{1 + 4x}}{2}$$

which is easy enough to integrate.

9. Answer: 1/2.

Solution sketch: Use integration by parts with $u = \ln(1 + \sqrt{x})$ and dv = dx. The new integral you end up with is:

$$\int \frac{\sqrt{x}}{1+\sqrt{x}} \ dx.$$

This can be simplified into a rational function after substituting $u = 1 + \sqrt{x}$: you get

$$\int \frac{(u-1)^2}{u} \ du$$

which is easy enough to solve, by expanding the numerator.