TheRobert Gillespie

ACADEMIIC

SKILLS

Limits as x approaches a Real Number

 CENTRE
Limits

Roughly speaking, finding the limit involves examining the behaviour of a function $f(x)$ as x approaches a real number a that may or may not be in the domain of f, that is,

$$
\lim _{x \rightarrow a} f(x)=L, \text { where } L \text { is a real number, }
$$

then it is said that the limit exists. Otherwise, the limit does not exist.
It is important to remember that limits describe the behaviour of a function near a particular point, but not necessarily at the point itself!

Computation of Limits in Some Cases

Case 1. Direct substitution rule.
Example. Find $\lim _{x \rightarrow-2} \frac{x^{3}+2 x^{2}-1}{5-3 x}$.
Solution. By substituting $x=-2$,

$$
\lim _{x \rightarrow-2} \frac{x^{3}+2 x^{2}-1}{5-3 x}=\frac{(-2)^{3}+2(-2)^{2}-1}{5-3(-2)}=-\frac{1}{11}
$$

Case 2. If the fraction is of the form $\frac{0}{0}$ and $\frac{\infty}{\infty}$, then, sometimes, there is HOPE!
Try to manipulate $f(x)$ by rationalizing, factoring, etc. in order to cancel. (Alternatively, L'Hôpital's Rule can be used.)

Example. Compute $\lim _{x \rightarrow 2} \frac{x-4}{\sqrt{x}-2}$.
Solution. The fraction has the form $\frac{0}{0}$. HOPE!
By using the difference of squares,

$$
\begin{aligned}
\lim _{x \rightarrow 4} \frac{x-4}{\sqrt{x}-2} & =\lim _{x \rightarrow 4} \frac{(\sqrt{x}-2)(\sqrt{x}+2)}{\sqrt{x}-\sqrt{2}} \\
& =\lim _{x \rightarrow 4} \sqrt{x}+\sqrt{2}=\sqrt{4}+\sqrt{2} \\
& =2+\sqrt{2}
\end{aligned}
$$

Case 3. If the fraction is of the form $\frac{1}{0}$, then the limit does not exist. (Note that 1 in the numerator can be any non-zero number.)

Example. Evaluate $\lim _{x \rightarrow-3} \frac{x^{2}-x+12}{x+3}$, if possible.

Solution. Note that $f(x)$ cannot be reduced.
The limit of the numerator is $\lim _{x \rightarrow-3}\left(x^{2}-x+12\right)=24$, which is not equal to zero.

The limit of the denominator is $\lim _{x \rightarrow-3} x+3=0$.
Thus, the limit does not exist.

Squeeze Theorem
Suppose that $g(x) \leq f(x) \leq h(x)$ for all x in an open interval containing a, except possibly at $x=a$ itself and that $\lim _{x \rightarrow a} g(x)=\lim _{x \rightarrow a} h(x)=L$. Then, $\lim _{x \rightarrow a} f(x)=L$.

Example. Evaluate $\lim _{x \rightarrow 0} x^{2} e^{\sin (1 / x)}$.
Solution. Using the fact that $-1 \leq \sin (x) \leq 1$ in order to create an inequality,

$$
\begin{gathered}
-1 \leq \sin (1 / x) \leq 1 \\
e^{-1} \leq e^{\sin (1 / x)} \leq e^{1} \\
x^{2} e^{-1} \leq x^{2} e^{\sin (1 / x)} \leq x^{2} e
\end{gathered}
$$

Since $x^{2} e^{-1} \leq x^{2} e^{\sin (1 / x)} \leq x^{2} e$ and $\lim _{x \rightarrow 0} x^{2} e^{-1}=\lim _{x \rightarrow 0} x^{2} e=0$, $\lim x^{2} e^{\sin (1 / x)}=0$ by the Squeeze Theorem. (Note that the limit cannot $x \rightarrow 0$ be evaluated by direct substitution as the limit of the exponential function, $e^{\sin (1 / x)}$, does not exist.

