Differential Equations

Separable Differential Equation (DE)

$$
\begin{array}{ll}
N(x)+M(y) \frac{d y}{d x}=0, & \text { where } N(x) \text { is a function of } x \text { only and } M(y) \text { is a } \\
& \text { function of } y \text { only. }
\end{array}
$$

To solve: Separate the equation so that all y 's are on one side and all X 's are on the other side. Then, integrate.

Example. Find the general solution of $\left(x^{2}+4\right) \frac{d y}{d x}=x y$.
Solution. Note that $y=0$ is a solution. To find the other solutions, assume that $y \neq 0$ and separate the variable as follows:

$$
\begin{aligned}
& \left(x^{2}+4\right) \frac{d y}{d x}=x y \\
& \frac{1}{y} d y=\frac{x}{x^{2}+4} d x
\end{aligned}
$$

Now, integrate, and try to find an explicit equation for y (if possible).

$$
\begin{aligned}
\int \frac{1}{y} d y & =\int \frac{x}{x^{2}+4} d x \\
\ln |y| & =\frac{1}{2} \ln \left|x^{2}+4\right|+C \\
e^{\ln |y|} & =e^{\left.\frac{1}{2} \ln x^{2}+4 \right\rvert\,+C} \\
|y| & =e^{\ln x^{2}+\left.4\right|^{\frac{1}{2}}} e^{C} \\
y & = \pm A \sqrt{x^{2}+4}, \quad \text { where } A=e^{C}
\end{aligned}
$$

First Order Linear Differential Equation (DE)

$$
\frac{d y}{d x}+P(x) y=Q(x), \quad \text { where } P(x) \text { and } Q(x) \text { are continuous functions. }
$$

To solve: The DE must be in the above form with only the coefficient of 1 in front of $\frac{d y}{d x}$. Compute the integrating factor, $I(x)=e^{\int P(x) d x}$.
Multiply the integrating factor across the DE and integrate.

Example. Solve the differential equation $\frac{x}{2} y^{\prime}+y=6 x^{2}$, where $x>0$.

Solution. DE rewritten: $y^{\prime}+\frac{2}{x} y=12 x$
Integrating factor: $\quad I(x)=e^{\int P(x) d x}=e^{\int \frac{2}{x} d x}=e^{2 \ln x}$

$$
=e^{\ln \left(x^{2}\right)}=x^{2}
$$

Multiply the DE by the integrating factor, and simplify.

$$
\begin{aligned}
x^{2}\left(y^{\prime}+\frac{2}{x} y\right) & =x^{2}(12 x) \\
x^{2} y^{\prime}+2 x y & =12 x^{3} \\
\left(y x^{2}\right)^{\prime} & =12 x^{3}
\end{aligned}
$$

The main idea is to recognize that the left-hand side of the DE is the product rule applied to the product of the unknown function y and the integrating factor $I(x)$, that is, $\left(y x^{2}\right)^{\prime}=y^{\prime} x^{2}+2 x y$.

Now, integrate the DE, and find an explicit equation for y.

$$
\begin{aligned}
\int\left(y x^{2}\right)^{\prime} d x & =\int 12 x^{3} d x \\
y x^{2} & =3 x^{4}+C \\
y & =\frac{1}{x^{2}}\left(3 x^{4}+C\right)=3 x^{2}+\frac{C}{x^{2}}
\end{aligned}
$$

