Differentiation Techniques

CENTRE
Assume that c and n are real numbers and $f(x), g(x)$, and $u(x)$ are any differentiable functions of x :

1. $\frac{d}{d x}(c)=0$
2. $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$ (power rule)
3. $\frac{d}{d x}(c f)=c \frac{d f}{d x}$
4. $\frac{d}{d x}(f \pm g)=\frac{d f}{d x} \pm \frac{d g}{d x}$
5. $\frac{d}{d x}(f g)=g \frac{d f}{d x}+f \frac{d g}{d x}$ or $(f g)^{\prime}=g f^{\prime}+f g^{\prime} \quad$ (product rule)
6. $\frac{d(f / g)}{d x}=\frac{g \frac{d f}{d x}-f \frac{d g}{d x}}{g^{2}}$ or $\left(\frac{f}{g}\right)^{\prime}=\frac{g f^{\prime}-f g^{\prime}}{g^{2}} \quad$ (quotient rule)
7. $\frac{d[u(x)]^{n}}{d x}=n[u(x)]^{n-1} \frac{d(u(x))}{d x} \quad$ (general power rule - chain rule)
8. $\frac{d\left(e^{x}\right)}{d x}=e^{x}$
9. $\frac{d(\ln x)}{d x}=\frac{1}{x}$
10. $\frac{d\left(e^{u(x)}\right)}{d x}=e^{u(x)} \frac{d(u(x))}{d x}$
11. $\frac{d[\ln (u(x))]}{d x}=\frac{1}{u(x)} \frac{d(u(x))}{d x}$
12. $\frac{d\left(a^{x}\right)}{d x}=a^{x} \ln a$
13. $\frac{d\left(\log _{a} x\right)}{d x}=\frac{1}{x \ln a}$
14. $\frac{d\left(a^{u(x)}\right)}{d x}=a^{u(x)} \ln a \frac{d(u(x))}{d x}$
15. $\frac{d\left(\log _{a} u(x)\right)}{d x}=\frac{1}{u(x) \ln a} \frac{d(u(x))}{d x}$
